द्विघात समीकरण Ex 4.3

 


प्रश्न 1.
यदि निम्नलिखित द्विघात समीकरणों के मूलों का अस्तित्व हो तो इन्हें पूर्ण वर्ग बनाने की विधि द्वारा ज्ञात कीजिए:
(i) 2x2 – 7x + 3 = 0
(ii) 2x2 + x – 4 = 0
(iii) 4x2 + 43x + 3 = 0
(iv) 2x2 + x + 4 = 0
हल:
(i) चूँकि 2x2 – 7x + 3 = 0 में a = 2, b = – 7 एवं c = 3
इसलिए b2 – 4ac = (-7)2 – 4 (2) (3) = 49 – 24 = 25 > 0
अतः मूलों का अस्तित्व है।
MP Board Class 10th Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 1
अतः समीकरण के अभीष्ट मूल 12 एवं 3 हैं।

(ii) चूँकि 2x2 + x – 4 = 0 में a = 2, b = 1 एवं c = -4
इसलिए b2 – 4ac = (1)2 – 4 (2) (-4) = 1 + 32 = 33
अतः मूलों का अस्तित्व है।
MP Board Class 10th Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 2
अत: समीकरण के अभीष्ट मूल = 1±334 हैं।

(iii) चूँकि 4x2 + 43 x + 3 = 0 में a = 4, b = 4 3, c = 3
इसलिए b2 – 4ac = (43)2 (4) (3) = 48 – 48 = 0
अतः मूलों का अस्तित्व है।
अब 4x2 + 4 3 x + 3 = 0
⇒ (2x)2 + 2 (2x) (3) + (3)2 = 0
(2x + 3)2 = 0
⇒ 2x + 3 = 0 ⇒ x = 32
अत: समीकरण के अभीष्ट मूल 32 और 32 हैं।

(iv) चूँकि 2x2 + x + 4 = 0 में a = 2, b = 1 एवं c = 4
इसलिए b2 – 4ac = (1)2 – 4 (2) (4) = 1 – 32 = -31 < 0
अत: मूलों का कोई अस्तित्त्व नहीं है।
अतः समीकरण का कोई भी वास्तविक मूल नहीं है।


प्रश्न 2.
निम्न (द्विघात) समीकरणों के मूल द्विघाती सूत्र का उपयोग करके ज्ञात कीजिए –
(i) 2x2 – 7x + 3 = 0
(ii) 2x2 + x – 4 = 0
(iii) 4x2 + 43 x + 3 = 0
(iv) 2x2 + x + 4 = 0
हल:
(i) चूँकि 2x2 – 7x + 3 = 0 में a = 2, b = – 7 एवं c = 3
MP Board Class 10th Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 3
अतः दत्त वर्ग समीकरण के अभीष्ट मूल 3 एवं 12 हैं।

(ii) चूँकि 2x2 + x – 4 = 0 में a = 2, b = 1, एवं c = – 4
MP Board Class 10th Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 4
अतः द्विघात समीकरण के अभीष्ट मूल 1±334 हैं।

(iii) चूँकि 4x2 + 43 x + 3 = 0 में a = 4, b = 43 एवं c = 3
MP Board Class 10th Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 5
अत: दत्त वर्ग समीकरण के अभीष्ट मूल 32 और 32 हैं।

(iv) चूँकि 2x2 + x + 4 = 0 में a = 2, b = 1 एवं c = 4
MP Board Class 10th Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 6
चूँकि 31 एक वास्तविक संख्या नहीं है।
अत: वर्ग समीकरण का कोई भी वास्तविक मूल नहीं है।

प्रश्न 3.
निम्न समीकरणों के मूल ज्ञात कीजिए :
(i) x – 1x = 3, x ≠ 0
(ii) 1x+4 – 1x7 = 1130, x ≠ -4,7
हल:
(i) x – 1x = 3 ⇒ x2 – 1 = 3x
⇒ x2 – 3x – 1 = 0, यहाँ a = 1, b = -3 एवं c = -1
MP Board Class 10th Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 7
अतः दत्त समीकरण के अभीष्ट मूल 3±132 है।

(ii) 1x+41x7=1130
⇒ 30 (x – 7) – 30 (x + 4) = 11 (x + 4) (x – 7)
⇒ 30x – 210 – 30x – 120 = 11 (x2 – 7x + 4x – 28)
⇒ -330 = 11 (x2 – 3x – 28)
⇒ x2 – 3x – 28 = -30
⇒ x2 – 3x + 2 = 0
⇒ x2 – x – 2x + 2 = 0
⇒ x (x – 1)- 2 (x – 1) = 0
⇒ (x – 1) (x – 2) = 0
या तो x – 1 = 0 ⇒ x = 1
अथवा x – 2 = 0 ⇒ x = 2
अतः दत्त समीकरण के अभीष्ट मूल 1 और 2 हैं।


प्रश्न 4.
3 वर्ष पूर्व रहमान की आयु (वर्षों में) का व्युत्क्रम और अब से 5 वर्ष पश्चात् आयु के व्युत्क्रम का योग 13 है। उसकी वर्तमान आयु ज्ञात कीजिए।
हल:
मान लीजिए कि रहमान की वर्तमान आयु x वर्ष है तो प्रश्नानुसार,
1x3 + 1x+5 = 13
⇒ 3 (x + 5) + 3 (x – 3) = (x – 3) (x + 5)
⇒ 3x + 15 + 3x – 9 = x2 + 5x – 3x – 15
⇒ 6x + 6 = x2 + 2x – 15
⇒ x2 – 4x – 21 = 0
⇒ x2 – 7x + 3x – 21 = 0
⇒ x (x – 7) + 3 (x – 7) = 0
⇒ (x – 7) (x + 3) = 0
या तो x + 3 = 0 ⇒ x = -3 (जो असम्भव है)
अथवा x – 7 = 0 ⇒ x = 7
अतः रहमान की अभीष्ट आयु = 7 वर्ष।

प्रश्न 5.
एक क्लास टेस्ट में शेफाली के गणित और अंग्रेजी में प्राप्त किए गए अंकों का योग 30 है। यदि उसको गणित में 2 अंक अधिक और अंग्रेजी में 3 अंक कम मिले होते, उनके अंकों को गुणनफल 210 होता। उसके द्वारा दोनों विषयों में प्राप्त किए अंक ज्ञात कीजिए।
हल:
मान लीजिए शेफाली ने गणित में x अंक प्राप्त किए तो उसके अंग्रेजी में प्राप्त अंक = 30 – x
चूँकि दोनों विषयों के अंकों का योग 30 दिया गया है।
अब प्रश्नानुसार, (x + 2) × (30 – x – 3) = 210
⇒ (x + 2)(27 – x) = 210
⇒ 27x – x2 + 54 -2x = 210
⇒ x2 – 25x + 156 = 0
⇒ x2 – 12x – 13x + 156 = 0
⇒ x (x – 12)- 13 (x – 12) = 0
⇒ (x – 12) (x – 13) = 0
या तो (x – 12) = 0 ⇒ x = 12
अथवा x – 13 = 0 ⇒ x = 13
जब गणित में x = 12 अंक तो अंग्रेजी में = 30 – x = 30 – 12 = 18 अंक प्राप्त होंगे और जब गणित में x = 13 अंक तो अंग्रेजी में = 30 – 13 = 17 अंक प्राप्त होंगे
अत: गणित एवं अंग्रेजी में प्राप्त अभीष्ट अंक क्रमशः 12 एवं 18 अथवा 13 एवं 17 होंगे।

प्रश्न 6.
एक आयताकार खेत का विकर्ण उसकी छोटी भुजा से 60 मी. अधिक लम्बा है। यदि बड़ी भुजा छोटी भुजा से 30 मी. अधिक हो, तो खेत की भुजाएँ ज्ञात कीजिए।
हल:
मान लीजिए आयताकार खेत की छोटी भुजा x मी. है तो प्रश्नानुसार विकर्ण = (x + 60) मी. एवं
बड़ी भुजा = (x + 30) मी.
अब पाइथागोरम प्रमेय से,
(विकर्ण)2 = (बड़ी भुजा)2 + (छोटी भुजा)2
⇒ (x + 60)2 = (x + 30)2 + (x)2
⇒ x2 + 120x + 3600 = x2 + 60x + 900 + x2
⇒ x2 – 60x – 2700 = 0
⇒ x2 – 90x + 30x – 2700 = 0
⇒ x (x – 90) + 30 (x – 90) = 0
⇒ (x – 90) (x + 30) = 0
या तो x + 30 = 0 ⇒ x = – 30 जो असम्भव है।
अथवा x – 90 = 0 ⇒ x = 90 मी.
⇒ छोटी भुजा = x = 90 मी.
एवं बड़ी भुजा = x + 30 = 90 + 30 = 120 मी.
अत: आयताकार खेत की अभीष्ट भुजाएँ 120 मी. एवं 90 मी. है।


प्रश्न 7.
दो संख्याओं के वर्गों का अन्तर 180 है। छोटी संख्या का वर्ग बड़ी संख्या का आठ गुना है। दोनों संख्याएँ ज्ञात कीजिए।
हल:
मान लीजिए बड़ी संख्या x है तो प्रश्नानुसार,
(छोटी संख्या)2 = 8x ⇒ छोटी संख्या = 8x
एवं x2 – 8x = 180
⇒ x2 – 8x = 180 = 0
⇒ x2 – 18x + 10x – 180 = 0
⇒ x(x – 18) + 10 (x – 18) = 0
⇒ (x – 18) (x + 10) = 0
यातो x – 18 = 0 ⇒ x = 18 बड़ी संख्या
तो छोटी संख्या = 8x=8×18=144=±12
अथवा x + 10 = 0 ⇒ x = -10 जो असम्भव है।
अत: अभीष्ट संख्याएँ या तो 18 और 12 अथवा 18 और – 12 हैं।

प्रश्न 8.
एक रेलगाड़ी एक समान चाल से 360 km की दूरी तय करती है। यदि यह चाल 5 km/h अधिक होती, तो वह उसी यात्रा में 1 घण्टा कम समय लेती। रेलगाडी की चाल ज्ञात कीजिए।
हल:
मान लीजिए रेलगाड़ी की चाल x km/h है तो 360 km दूरी तय करने में लगा समय = 360x h
अब प्रश्नानुसार, 360x+5 = 360x = 1
⇒ 1 = 360x – 360x+5
⇒ x (x + 5) = 360 (x + 5) – 360 (x)
⇒ x2 + 5x = 360x + 1800 – 360x
⇒ x2 + 5x – 1800 = 0
⇒ x2 + 45x – 40x – 1800 = 0
⇒ x(x + 45) – 40 (x + 45) = 0
⇒ (x + 45) (x – 40) = 0
या तो x + 45 = 0 ⇒ x = -45 जो असम्भव है।
अथवा x – 40 = 0 ⇒ x = 40
अतः रेलगाड़ी की अभीष्ट चाल = 40 km/h है।

प्रश्न 9.
दो पानी के नल एक साथ एक हौज को 938 घण्टों में भर सकते हैं। बड़े व्यास वाला नल हौज को भरने में कम व्यास वाले नल से 10 घण्टे कम समय लेता है। प्रत्येक द्वारा अलग से हौज को भरने के समय ज्ञात कीजिए।
हल:
मान लीजिए छोटा नल हौज को भरने में x घण्टे लेता है तो बड़ा नल उस हौज को भरने में (x – 10) घण्टे लेगा। दोनों मिलकर उस हौज को भरने में 938 = 758 घण्टे लेते हैं। 1 घण्टे में छोटा नल 1x हौज तथा बड़ा नल 1x10 हौज भरेगा तथा 1 घण्टे में कुल 875 हौज भरेगा।
⇒ 1x + 1x10 = 875
⇒ 75 (x – 10) + 75x = 8x (x – 10)
⇒ 75x – 750 + 75x = 8x2 – 80x
⇒ 8x2 – 150x – 80x + 750 = 0
⇒ 8x2 – 230x + 750 = 0
⇒ 8x2 – 200x – 30x + 750 = 0
⇒ 8x (x – 25) – 30 (x – 25) = 0
⇒ (x – 25) (8x – 30) = 0
या तो 8x – 30 = 0 ⇒ x = 308 = 154 = 3.75
घण्टे तब बड़े नल द्वारा लिया समय x – 10 = 3.75 – 10 = – 6:25 घण्टे, जो असम्भव है।
अथवा x – 25 = 0 ⇒ x = 25 घण्टे
तब बड़े नल द्वारा लिया समय = x – 10 = 25 – 10 = 15 घण्टे
अत: दोनों नलों द्वारा हौज को भरने में अलग-अलग लिया गया समय 25 घण्टे एवं 15 घण्टे


प्रश्न 10.
मैसूर और बैंगलौर के बीच 132 km यात्रा करने में एक एक्सप्रेस रेलगाड़ी सवारी गाड़ी से 1 घण्टा कम समय लेती है। (मध्य के स्टेशनों पर ठहरने का समय ध्यान न लिया जाए) यदि एक्सप्रेस रेलगाड़ी की औसत चाल सवारी गाड़ी की औसत चाल से 11 km/h अधिक हो, तो दोनों रेलगाड़ियों की औसत चाल ज्ञात कीजिए।
हल:
मान लीजिए सवारी गाड़ी की चाल x km/h है तो एक्सप्रेस रेलगाड़ी की चाल = (x + 11) km/h 132 km की दूरी तय करने में सवारी गाड़ी द्वारा लिया गया समय = 132x h एवं एक्सप्रेस रेलगाड़ी द्वारा लिया गया समय = 132x+11 h, तब प्रश्नानुसार,
⇒ 132x – 132x+11 = 1
⇒ 132x + 132 × 11 – 132x = x (x + 11)
⇒ 132x + 33 × 44 – 132x = x2 + 11x
⇒ x2 + 11x – 33 × 44 = 0
⇒ x2 + 44x – 33x – 33 × 44 = 0
⇒ x(x + 44)-33 (x + 44) = 0
⇒ (x + 44) (x – 33) = 0
या तो x + 44 = 0 ⇒ x = -44 जो असम्भव है।
अथवा x – 33 = 0 ⇒ x = 33 km/h सवारी गाड़ी की चाल
⇒ एक्सप्रेस रेलगाड़ी की अभीष्ट चाल = x + 11 = 33 + 11 = 44 km/h
अत: एक्सप्रेस रेलगाड़ी की अभीष्ट चाल = 44 km/h एवं सवारी रेलगाड़ी की अभीष्ट चाल = 33 km/h.

प्रश्न 11.
दो वर्गों के क्षेत्रफलों का योग 468 m2 है। यदि उनके परिमापों का अन्तर 24 हो, तो दोनों वर्गों की भुजाएँ ज्ञात कीजिए।
हल:
चूँकि वर्गों के परिमापों का अन्तर = 24 m दिया है तब उनकी भुजाओं का अन्तर = 244 = 6 m
मान लीजिए कि छोटे वर्ग की भुजा x m है
तब बड़े वर्ग की भुजा = (x + 6) m होगी
⇒ क्षेत्रफलों का योग = (x + 6)2 + (x)2 = 468
⇒ x2 + 12x + 36 + 2 = 468
⇒ 2x2 + 12x – 432 = 0
⇒ x2 + 6x – 216 = 0
⇒ x2 + 18x – 12x – 216 = 0
⇒ x(x + 18) – 12(x + 18) = 0
⇒ (x + 18)(x – 12) = 0 या तो
⇒ x + 18 = 0 ⇒ x = -18 जो असम्भव है।
अथवा x – 12 = 0 ⇒ x = 12 m छोटे वर्ग की भुजा
अब बड़े वर्ग की भुजा = x + 6 = 12 + 6 = 18 m
अतः वर्गों की अभीष्ट भुजाएँ 12 m एवं 18 m हैं।